Interplay of PIWI/Argonaute protein MIWI and kinesin KIF17b in chromatoid bodies of male germ cells.
نویسندگان
چکیده
Chromatoid bodies are thought to act as male-germ-cell-specific platforms for the storing and processing of haploid transcripts. The molecular mechanisms governing the formation and function of these germ-cell-specific structures have remained elusive. In this study, we show that the kinesin motor protein KIF17b, which is involved in the nucleocytoplasmic transport of RNA and of a transcriptional coactivator, localizes in chromatoid bodies. The chromatoid body moves actively and non-randomly in the cytoplasm of round spermatids, making frequent contacts with the nuclear envelope. The localization of KIF17b thereby offers a potential mechanism for microtubule-dependent mobility of chromatoid bodies, as well as for the transport of the specific components in and out of the chromatoid body. Interestingly, we demonstrate that KIF17b physically interacts with a testis-specific member of the PIWI/Argonaute family, MIWI, a component of chromatoid bodies implicated in RNA metabolism. A functional interplay between KIF17b and MIWI might be needed for the loading of haploid RNAs in the chromatoid body. Importantly, chromatoid bodies from round spermatids of miwi-null mice are not fully compacted and remain as a diffuse chromatoid material, revealing the essential role played by MIWI in the formation of chromatoid bodies. These results shed new light on the function of chromatoid bodies in the post-transcriptional regulation of gene expression in haploid germ cells.
منابع مشابه
Ca2+/Calmodulin-Dependent Protein Kinase IV Promotes Interplay of Proteins in Chromatoid Body of Male Germ Cells
The chromatoid body is a granule-like structure of male germ cells, containing many proteins and RNAs, and is important for spermatogenesis. However, the molecular mechanisms for the formation and function of the chromatoid body are still elusive. Here, we report that Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) accumulates in the chromatoid body by immunofluorescence staining, indica...
متن کاملDev101618 1..10
The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histo...
متن کاملDev101618 2592..2601
The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histo...
متن کاملMouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi.
Tudor domains are protein modules that mediate protein-protein interactions, potentially by binding to methylated ligands. A group of germline specific single and multiTudor domain containing proteins (TDRDs) represented by drosophila Tudor and its mammalian orthologs Tdrd1, Tdrd4/RNF17, and Tdrd6 play evolutionarily conserved roles in germinal granule/nuage formation and germ cell specificatio...
متن کاملMIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis.
Noncoding small RNAs have emerged as important regulators of gene expression at both transcriptional and posttranscriptional levels. Particularly, microRNA (miRNA)-mediated translational repression involving PIWI/Argonaute family proteins has been widely recognized as a novel mechanism of gene regulation. We previously reported that MIWI, a murine PIWI family member, is required for initiating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 119 Pt 13 شماره
صفحات -
تاریخ انتشار 2006